Operational Properties II

1. Use the Derivatives of Transforms Theorem to evaluate the given Laplace Transform and write your solution in terms of s.

$$\mathcal{L}\{te^{-10t}\}$$

2. Use the Derivatives of Transforms Theorem to evaluate the given Laplace Transform and write your solution in terms of s.

$$\mathcal{L}\{t \cos(2t)\}$$

3. Use the Laplace transform to solve the given initial-value problem.

$$y' + y = t \sin(t), \ y(0) = 0$$

4. Use the Convolution Theorem to evaluate the given Laplace Transform and write your solution in terms of s.

Do not evaluate the integral before transforming.

$$\mathcal{L}\{e^{-t}{*}e^tcos(t)\}$$

5. Use the Convolution Theorem to evaluate the given Laplace Transform and write your solution in terms of s.

Do not evaluate the integral before transforming.

$$\mathcal{L}\{\int_0^t e^{-\tau} cos(\tau) d\tau\}$$

6. Use the Convolution Theorem to evaluate the given Laplace Transform and write your solution in terms of s.

Do not evaluate the integral before transforming.

$$\mathcal{L}\{\int_0^t \tau e^{t-\tau} \, d\tau\}$$